
N88- 1 7 2 3 8
T d i n g Artificial Neural Systems to Drive:

Manual Wning Techniques fm Au~omous Systems

J. F. Shepanski and S. A. Macy

TRW, Inc.
One Space Park, 02/1779
Redondo Beach, CA 90278

Abdanct

We have developed a methodology for manually training autonomous control systems
based on artificial neural systems (ANS). In applications where the rule set governing an expert’s
decisions is difficult to formulate, ANS can be used to extract rules by associating the information
an expert receives with the actions he takes. Properly constructed networks imitate rules of
behavior that permits them to function autonomously when they are trained on the spanning set
of possible situations. This training can be provided manually, either under the direct supervision
of a system trainer, or indirectly using a background mode where the network assimilates training
data as the expert performs his day-to-day tasks. To demonstrate these methods we have trained
an ANS network to drive a vehicle through simulated freeway tr&c.

Inlmducticm

Computational systems employing fine grained parallelism are revolutionizing the way we
approach a number of long standing problems involving pattern recognition and cognitive process-
ing. The field spans a wide variety of computational networks, from constructs emulating neural
functions, to more crystalline configurations that resemble systolic arrays. Several titles are used
to describe this broad area of research, we use the term artificial neural systems (ANS). Our con-
cern in this work is the use of ANS for manually training certain types of autonomous systems
where the desired rules of behavior are difficult to formulate.

Artificial neural systems consist of a number of processing elements interconnected in a
weighted, user-specified fashion, the interconnection weights acting as memory for the system.
Each processing element calculates an output value based on the weighted sum of itg inputs. In
addition, the input data is correlated with the output or desired output (specified by an instructive
agent) in a training rule that is used to adjust the interconnection weights. In this way the net.
work learns patterns or imitates rules of behavior and decision making.

The particular ANS architecture we use is a variation of Rummelhart et. al. [11 multi-layer
perceptron employing the generalized delta rule (GDR) , Instead of a single, multi-layer struc-
ture, our final network has a a multiple component or “block” configuration where one block’s
output feeds into another (see Figure 3). The training methodology we have developed is not
tied to a particular training rule or architecture and should work well with alternative networks
like Grossberg’s adaptive resonance model[21.

- 2 -

The equations describing the network are [11:
- S a

i- 0
Transfer function: oj =(l + c J) - ’ , Si = wji oi;

Weight adaptation rule: Aw, =(1- a i) 9 i b j o i + aiAw~nviour;
m

C = 1
Error calculation: 6 j = o j (1- oj) 6,tukj,

where oj is the output of processing element j , w5 is the interconnection weight leading from ele-
ment i to i, n is the number of inputs to j , Aw is the adjustment of w , 9 is the training con-
stant, a is the training “momentum,” 63 is the calculated error for element i, and m is the
fanout of a given element. Element zero is a constant input, equal to one, so that w,o is
equivalent to the bias threshold of element j . The (1- a) factor in equation (2) differs from stan-
dard GDR formulation, but i t is useful for keeping track of the relative magnitudes of the two
terms. For the network’s output layer the summation in equation (3) is replaced with the
difference between the desired and actual output value of element i.

These networks are usually trained by presenting the system with sets of input/output data
vectors in cyclic fashion, the entire cycle of database presentation repeated dozens of times. This
method is effective when the training agent is a computer operating in batch mode, but would be
intolerable for a human instructor. There are two developments that will help real-time human
training. The first is a more efficient incorporation of data/response patterns into a network. The
second, which we are addressing in this paper, is a suitable environment wherein a man and ANS
network can interact in training situation with minimum inconvenience or boredom on the
human’s part. The ability to systemafically train networks in this fashion is extremely useful for
developing certain types of expert systems including automatic signal processors, autopilots,
robots and other autonomous machines. We report a number of techniques aimed at facilitating
this type of training, and we propose a general method for teaching these networks.

SystemDeVelogmmt

Our work focuses on the utility of ANS for system control. I t began as an application of
Barto and Sutton’s rrssociative search network[3]. Although their approach was useful in a
number of ways, i t fell short when we tried to use it for capturing the subtleties of human
decision-making. In response we shifted our emphasis from constructing goal functions for
automatic learning, to methods for training networks using direct human instruction. An integral
part of this is the development of suitable interfaces between humans, networks and the outside
world or simulator. In this section we will report various approaches to these ends, and describe a
general methodology for manually teaching ANS networks. To demonstrate these techniques we
taught a network to drive a robot vehicle down a simulated highway in traffic. This application
combines binary decision making and control of continuous parameters.

Initially we investigated the use of automatic learning based on goal functions[3] for train-
ing control systems. We trained a network-controlled vehicle to maintain acceptable following
distances from cars ahead of it. On a graphics workstation, a one lane circular track was con-
structed and occupied by two vehicles: a network-controlled robot car and a pace car that varied its

232

- 3 -

speed at random.. Input data to the network consisted of the separation distance and the speed of
the robot vehicle. The values of a goal function were translated into desired output for GDR
training. Output controls consisted of three binary decision elements: 1) accelerate one increment
of speed, 2) maintain speed, and 3) decelerate one increment of speed. A t all times the desired
output vector had exactly one of these three elements active. The goal function was quadratic
with a minimum corresponding to the optimal following distance. Although i t had no direct con-
trol over the simulation, the goal function positively o r negatively reinforced the system’s
behavior.

The network was given complete control of the robot vehicle, and the human trainer had
no influence Lxcept the ability to start and terminate training. This proved unsatisfactory because
the initial system behavior--governed by random interconnection weights--was very unstable. The
robot tended to run over the car in front of it before significant training occurred. By carefully
halting and restarting training we achieved stable system behavior. A t first the following distance
maintained by the robot car oscillated as if the vehicle was attached by a spring to the pace car.
This activity gradually damped. After about one thousand training steps the vehicle maintained
the optimal following distance and responded quickly to changes in the pace car’s speed.

Constructing composite goal functions to promote more sophisticated abilities proved
difficult, even ill-defined, because there were many unspecified parameters. To generate goal
functions for these abilities would be similar to conventional programming-the type of labor we
want to circumvent using ANS. On the other hand, humans are adept at assessing complex s i t u s
tions and making decisions based on qualitative data, but their “goal functions” are difficult if not
impossible to capture analytically. One attraction of ANS is that i t c a ~ imitate behavior based on
these elusive rules without formally specifying them. At this point we turned our efforts to
manual training techniques.

The initially trained network was grafted into a larger system and augmented with addi-
tional inputs: distance and speed information on nearby pace cars in a second traffic lane, and an
output control signal governing lane changes. The original network’s ability to maintain a safe
following distance was retained intact. This grafting procedure is one of two methods we studied
for adding new abilities to gn existing system. (The second, which employs a block structure, is
described below.) The network remained in direct control of the robot vehicle, bu t a human
trainer instructed i t when and when not to change lanes. His commands were interpreted as the
desired output and used in the GDR training algorithm. This technique, which we call coaching,
proved useful and the network quickly correlated its environmental inputs with the teacher’s
instructions. The network became adept at changing lanes and weaving through tratlic. We found
that the network took on the behavior pattern of its trainer. A conservative teacher produced a
timid network, while’an aggressive trainer produced a network that tended to cu t off other auto-
mobiles and squeeze through tight openings. Despite its success, the coaching method of training
did not solve the problem of initial network instability.

The stability problem was solved by giving the trainer direct control over the simulation.
The system configuration (Figure l) , allows the expert to exert control or release i t to the n e t
work. During initial training the expert is in the driver’s seat while the network acts the role of
apprentice. It receives sensor information, predicts system commands, and compares its

233

- 4 -

World (--> sensors)
or

Simulation
4- Actuation

I

predictions against the desired output (ie. the trainer's commands). Figure 2 shows the data and
command flow in detail. Input data is processed through different channels and presented to the
trainer and network. Where visual and audio formats are effective for humans, the network uses
information in vector form. This differentiation of data presentation is a limitation of the system;
removing i t is a task for future research. The trainer issues control commands in accordance with
his assigned task while the network takes the trainer's actions as desired system responses and
correlates these with the input. We refer to this procedure as master/apprentice training, network
training proceeds invisibly in the background as the expert proceeds with his day to day work. It
avoids the instability problem because the network is free to make errom without the adverse
consequence of throwing the operating environment into disarray.

Preprocessing
for human

data
hlput {

Preprocessing
for network

1

h Actuation

-+ Human +commands
expert

Predicted >q*
+ Network commands

Training
Rlle

Figure 1. A scheme for manually training ANS networks. Input data is received by both
the network and trainer. The trainer issues commands that are actuated (solid command
line), or he coaches the network in how it ought to respond (broken command line).

Once inibal, background training is complete, the expert proceeds in a more formal
manner to teach the network. He releases control of the command system to the network in
order to evaluate its behavior and weaknesses. He then resumes control and works through a
series of scenarios designed to train the network o u t of its bad behavior. By switching back and
forth between human and network control, the expert assesses the network's reliability and
teaches correct responses as needed. We find master/apprentice training works well for behavior

234

ORIGINAL PAGE IS
OF POOR QUALITY - 5 -

involving continuous functions, like steering. On the other hand, coaching is appropriate for deci-
sion functions, like when the car ought to pass. Our methodology employs both techniques.

The Driving Network

The fully developed freeway simulation consists of a two lane highway that is made of
p ined straight and curved segments which vary at random in length (and curvature). Several
pace cars move at random speeds near the robot vehicle. The network is given the tasks of track-
ing the road, negotiating curves, returning to the mad if placed far afield, maintaining safe dis-
tances from the pace cars, and changing lanes when appropriate. Instead of a single multi-layer
structure, the network is composed of two blocks; one controls the steering and the other regu-
lates speed and decides when the vehicle should change lanes (Figure 3). The first block receives
information about the position and speed of the robot vehicle relative to other cars in its vicinity.
Its output is used to determine the automobile’s speed and whether the robot should change
lanes. The passing signal is converted to a lane assignment based on the car’s current lane posi-
tion. The second block receives the lane assignment and data pertinent to the position and orien-
tation of the vehicle with respect to the road. The output is used to determine the steering angle
of the robot car.

Block 1 Inputs outputs
Constant 0

Speed
Dist. Ahead, PL
Dist. Ahead, OL

Dist. Behind, OL
Ret. Speed Ahead, PL
Ret. Speed Ahead, OL

Rel. Speed Behind, OL

0 Speed
0 Change Lanes 2 Convert lane change to lane number

Rel. Orientation
Steering Angle

Figure 3. The two blocks of the driving ANS network. Heavy arrows indicate total interconnectivity
between layers. PL designates the traffic lane presently occupied by the robot vehicle, OL refers
to the other lane, curvature refers to the road, lane number is either 0 or 1, relative orientation and
lateral distance refers to the robot car‘s direction and position relative to the road‘s direction and
center line, respectively.

The input data is displayed in pictorid and textual form to the driving instructor. He views
the road and nearby vehicles from the perspective of the driver’s seat or overhead. The network
receives information in the form of a vector whose elements have been scaled to unitary order,

235

- 6 -

O(1). Wide ranging input parameters, like distance, are compressed using the hyperbolic tangent
or logarithmic functions. In each block, the input layer is totally interconnected to both the o u t
put and a hidden layer. Our scheme trains in real time, and as we discuss later, i t trains more
smoothly with a small modification of the training algorithm.

Output is interpreted in two ways: as a binary decision or as a continuously varying param-
eter. The first simply compares the sigmoid output against a threshold. The second scales the
output to an appropriate range for ita application. For example, on the steering output element, a
0.5 value is interpreted 85 a zero steering angle. Left and right turns of varying degrees are ini-
tiated when this output is above o r below 0.5, respectively.

The network is divided into two blocks that can be trained separately. Beside being con-
ceptually easier to understand, we find this component approach is easy to train systen)atically.
Because each block has a restricted, well-defined set of tasks, the trainer can concentrate
specifically on those functions without being concerned that other aspects of the network behavior
are deteriorating.

We trained the system from bottom up, first teaching the network to stay on the road,
negotiate curves, change lanes, and how to return if the vehicle strayed off the highway. Block 2,
responsible for steering, learned these skills in a few minutes using the master/apprentice mode.
It tended to steer more slowly than a human but further training progressively improved its
responsiveness.

We experimented with different training constants and “momentum” values. Large 9
values, about 1, caused weights to change too coarsely. 9 values an order of magnitude smaller
worked well. We found no advantage in using momentum for this method of training, in fact,
the system responded about three times more slowly when a =0.9 +an when the momentum
term was dropped. Our standard training parameters were 9 =0.2, and a =O.O.

Fwre 4. Typical behavior of a networkamtrolled vehide (dark rectangle) when trained by
a) a conservative driver, and b) a reckless driver. Speed is indicated by the length of the a m .

After Block 2 was trained, we gave steering control to the network and concentrated on
teaching the network to change lanes and adjust speed. Speed control in this c s e was a continu-
ous variable and was best taught using master/apprentice training. On the other hand, the binary
decision to change lanes was best taught by coaching. About ten minutes of training were needed
to teach the network to weave through trafltic. We found that the network readily adapts the
behavioral pattern of its trainer. A conservative trainer generated a Betwork that hardly ever
passed, while an aggressive trainer produced a network that drove recklessly and tended to cut off
other cars (Figure 4) .

236

- 7 -

Dircumiun

One of the strengths of expert systems based on ANS is that the use of input data in the
decision making and control process does not have to be specified. The network adapb its inter-
nal weights to conform to input/output correlations i t discovers. It is i m p o r k t , however, that
data used by the human expert is also available to the network. The different processing of sen-
sor data for man and network may have important consequences, key information may be
presented to the man- but not the machine.

This difference in data processing is particularly worrisome for image data where human
ability to extract detail is vastly superior to our automatic image processing capabilities. Though
we would not require an image processing system to understand images, i t would have to extract
relevant information from cluttered backgrounds. Until we have sufficiently sophisticated algo-
rithms or networks to do this, our efforts at constructing expert systems which handle image data
are handicapped.

Scaling input data to the unitary order of magnitude is important for training stability. Tbis
is evident from equations (1) and (2) . The sigmoid transfer function ranges from 0.1 to 0.9 in
approximately four units, that is, over an O(1) domain. If system response must change in reac-
tion to a large, O(n) swing of a given input parameter, the weight associated with that input will
be trained toward an O(TI-') magnitude. On the other hand, if the same system responds to an
input whose range is 0(1), its associated weight will also be O(1). The weight adjustment equ%
tion does not recognize differences in weight magnitude, therefore relatively small weights will
undergo wild magnitude adjustments and converge weakly. On the other hand, if all input param-
eters axe of the same magnitude their associated weights will reflect this and the training constant
can be adjusted for gentle weight convergence. Because the output of hidden units are con-
strained between zero and one, O(1) is a good target range for input parameters. Both the hyper-
bolic tangent and logarithmic functions are useful for scaling wide ranging inputs. A useful form
of the latter is

where a>O and defines the limits of the intermediate linear section, and /3 is a scaling factor.
This symmetric logarithmic function is continuous in its first derivative, and useful when network
behavior should change slowly as a parameter increases without bound. On the other hand, if the
system should approach a limiting behavior, the tanh function is appropriate.

Weight adaptation is slso complicated by relaxing the common practice of restricting inter-
connections to adjacent layers. Equation (3) shows that the calculated error for a hidden layer-
given comparable weights, fanouts and output errors-will be one quarter or less than that of the
output layer. This is caused by the slope factor, oi(1- oi) . The difference in error magnitudes is
not noticeable in networks restricted to adjacent layer interconnectivity. But when this constraint
is released the effect of errors originating directly from an output unit has 4' times the magnitude
and effect of an error originating from a hidden unit removed d l a y m from the output layer.

237

- 8 -

Compared-to the corrections arising from the output units, those from the hidden units have little
influence on weight adjustment, and the power of a multilayer structure is weakened. The system
will train if we restrict connections to adjacent layers, but i t trains slowly. To compensate for this
effect we attenuate the error magnitudes originating from the output layer by the above factor.
This heuristic procedure works well and facilitates smooth learning.

Though we have made progress in real-time learning systems using GDR, compared to
humans-who can learn from a single data presentation-they remain relatively sluggish in learning
and response rates. We are interested in improvements of the GDR algorithm o r alternative
architectures that facilitate one-shot or rapid learning. In the latter case we are considering
HechtNielsen’s counterpropagation[4] and Grossberg and Carpenter’s adaptive resonance
models[3,5].

The construction of automated expert systems by observation of human personnel is
attractive because of its efficient use of the expert’s time and effort. Though the classic A I
approach of rule base inference is applicable when such rules are clear cut and well organized, too
often a human expert can not put his decision making process in words or specify the values of
parameters that influence him. The attraction of ANS based systems is that imitations of expert
behavior emerge as a natural consequence of their training.

1) D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal Representations by
Error Propagdon,” in Parallel Distributed Processing: Ezploratiom in the MurosPructure of Cogndwn,
Vol. I, D . E. Rumelhart and J. L. McClelland (Eds.), chap. 8, (1986), Bradford Books/MIT Press,
Cam bridge

2) S. Grossberg, Studies of Mind and Brain, (1982), Reidel, Boston

3) A. Barto and R. Sutton, “Landmark Learning: An Illustration of Associative Search,” Biologi-
cal Cybemeties,42, (1981), p. 1

4) R. HechtNielsen, “Counterpropag&on Networks,” Proceedmgs of the IEEE 1st Annual Inter-
national Conference on Neural Networks, San Diego, June 21-24, 1987

5) G. A. Carpenter and S. Grossberg, “A Massively Parallel Architecture for a Self-organizing
Neural Pattern Recognition Machine,” Computer Vision, Graphics and Image Processing, 31,
‘(1987), p.54

238

